
Iberoamerican Journal of Applied Computing                                               ISSN 2237-4523 

V.10, N.2, Dec/2020                                                                                                                                 Page 20 

Generating synthetic 2019-nCoV samples with WGAN to increase the precision of an 

Ensemble Classifier 

 
Arnon Bruno Ventrilho dos Santos, Deborah Ribeiro Carvalho 

Pontifícia Universidade Católica do Paraná (PUC-PR)  

E-mails: asantos.quantum@gmail.com, drdrcarvalho@gmail.com 

Abstract: The objective of this research is to present an alternative data augmentation technique 

based on WGAN to improve the precision in detection of positive 2019-nCoV samples, as well 

as compare it with other traditional data augmentation techniques, using a dataset composed of 

results of exams from individuals tested for COVID-19 in a hospital in Brazil. Given the data 

imbalance, we presented a gradient-boosted decision tree (GBDT) classifier with the 

preprocessed data in 13 different oversampling training scenarios, using SMOTE, ADASYN, 

Random Over Sampling, and WGAN to augment positive samples, as well as no augmentation 

at all. All over-sampling scenarios are set so that a mixture of real and synthetic samples is 

presented to the classifier. GBDT classifier was then trained in all scenarios with stratified k-fold 

(k=10), and its hyperparameters were optimized for the highest possible f1-measure with the 

random search algorithm for 20000 epochs. A hold-out test set was prepared by randomly 

removing an even number of really positive and negative samples from the training set and 

shuffling it for testing. GBDT classifier trained with 50% WGAN synthetic positive samples 

achieved a precision score of 0.967 on the test set, far outperforming all other scenarios, including 

similar mixture scenarios using other oversampling strategies. These results indicate that data 

augmentation with WGAN to oversample the minority class might be an alternative for traditional 

oversampling techniques, even improving a classifier’s precision. 
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1.  INTRODUCTION 

In later 2019, the world has seen the surge of a global pandemic caused by SARS-Cov-2 (also 

known as 2019-nCoV), a virus is known to be originated in Wuhan, China. This pandemic 

caused the death of dozens of thousands of people around the world until mid-2020. Methods 

to either treat or extinguish the disease are under development in the form of drugs or vaccines. 

Still, until such a solution is fully developed, people must get tested to be rapidly treated and 

isolated in case of infection [1]. Among the available detection mechanisms, one could use 

machine learning classifiers, which could point to preventive measures in advance. 

Because available training samples for 2019-nCoV are not abundant, synthetically augmenting 

real samples emerge as a potential alternative to increase the number of training samples 

without depending on real individuals' infection and testing 

Generative Adversarial Networks (GANs) is a Deep Learning based model in which a 

competitive process involving a pair of neural networks generate artificial data from random 

noise. Such process occurs by iteratively training a generator (G) network that presents both 

real samples and random noise into a discriminator (D) network, which then evaluates the 

quality of these samples and feed-back to G, that tries to minimize the loss by providing more 

realistic samples originated from random noise to D in the next interaction [2]. This process has 

proven to be effective in creating realistic samples in the form of images in the computer vision 

realm [3] and other domains such as natural language processing [4]. 

Some modifications had been proposed to the GAN framework since its first appearance back 

in 2014. Aiming to tackle the instability in the learning process of GANs and provide 

meaningful learning curves to ease hyperparameter adjustment, the Wasserstein GAN (WGAN) 

algorithm has been proposed as an improved version of the original GAN. This algorithm works 
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by replacing D with a Critic (C) network, applying the Wasserstein loss function and a weighted 

clipping to enforce a Lipschitz constraint on C [5][6]. With such improvements, the training of 

GANs became more stable and therefore allowed for more complex and realistic synthetic data 

to emerge [6].  

In this research, we intend to train an ensemble classifier in different over-sampling training 

scenarios and measure its performance in a test set by evaluating its capacity to identify true 

positives concerning all positive samples using the precision score well as other secondary 

metrics. Our intention is also to evaluate if training a classifier with synthetic positive samples 

created with WGAN poses an alternative to traditional data augmentation techniques such as 

SMOTE [7], ADASYN [8], and Random Oversampling (ROS) [9]. 

 

2.  2019-nCoV 

Known to be originated in Wuhan (China) in later 2019, 2019-nCoV is a virus that causes severe 

acute respiratory disease and is easily transmitted from one individual to another. Recent 

research [10] indicates that the reproduction number (R_0) of this virus is around 2.2, which 

means that each individual can infect 2.2 other individuals. To put that into perspective, the 

same research points that the virus responsible for the common flu (Influenza) has an estimated 

R_0 of 1.5. This basically suggests that the 2019-nCoV is a highly infective agent, even 

compatible with the deadly 1918 flu outbreak. Therefore, its early detection could help avoid 

the spread of such disease [10][1]. 

In Brazil, there were 28 different types of tests to identify the virus until mid-2020. Most of 

these have high sensitivity (> 95%) and high specificity (>95%). However, these tests are not 

widely available and may require up to many days to deliver a result due to the high demand 

for these tests during the pandemic [1]. In this scenario, an alternative might be to use other 

exams to directly or indirectly identify the disease, such as measuring creatinine results and 

other exams to identify anomalous combinations that might point to a 2019-nCoV infection. 

This type of pattern recognition is made possible by using methods that ana-lyze large amounts 

of data, such as machine learning algorithms [26]. However, it is important to notice that not 

every 2019-nCoV case is registered to further data exploration, which may indicate a lack of 

enough data points for statistical models and machine learning algorithms to work properly 

[10][11][12]. With such a perspective, augmenting positive samples with new realistic 2019-

nCoV data points could be used for analysis without the need for a real infected individual. 

 

3.  DATA AUGMENTATION 

Real-world datasets are usually not uniformly distributed among its target classes. This is 

somehow related to the noisy nature of data itself and presents challenges to machine learning 

classifiers, which uses samples from these data to recognize patterns and model new unseen 

data samples [13]. There is data augmentation among the techniques available to tackle this 

challenge and improve machine learning classifiers' performance [7]. This technique consists 

of creating new synthetic samples from real ones, which can then be used for training, thus 

decreasing bias by increasing the number of minority samples [13]. 

Data augmentation is used in domains such as computer vision when there is a lack of image 

data. New samples are created to increase model variance [14], or in Natural Language 

Processing, to increase vocabulary corpus in texts [15]. But the use of such a technique is not 

restricted to these domains, as it is also generally used when there is a high imbalance between 

classes in a collection of observations. This is generally the case in fraud detection, 

bioinformatics, and medical datasets [9].  

Traditionally, data augmentation algorithms focus on creating new synthetic samples by 

averaging the distance between real data points in a space or simply creating copies of the real 



Iberoamerican Journal of Applied Computing                                               ISSN 2237-4523 

V.10, N.2, Dec/2020                                                                                                                                 Page 22 

samples on that same space. The first has the effect of creating completely new synthetic 

samples, but that might lack realism, and the second might be realistic but present no real 

novelty to the model [9][14]. Some of these algorithms are further explored below. 

 

3.1 Synthetic Minority Over-sampling Technique (SMOTE) 

SMOTE [7] is a data augmentation technique that aims to oversample the minority class by 

finding the nearest neighbor in a group of real samples and placing a synthetic one between 

them. This has the effect of creating synthetic samples that are similar to the real ones. Still, by 

not taking the distribution of sub-classes into account, these synthetic samples might cause 

overlapping be-tween classes [9][13]. Although this effect might not be substantial in a low-

dimensional space with only a few samples, its scalability might be severely compromised [9]. 

 

3.2 Adaptive Synthetic (ADASYN) 

Adaptative synthetic sampling [8] works by measuring the difficulty in learning samples from 

the minority class and then creating more synthetic samples from harder to learn. This has the 

effect of producing new synthetic data points that are closer to the decision boundary. It also 

uses a nearest neighbor approach to create these new samples, so it might still be impacted by 

the same points mentioned earlier in SMOTE [7][9][13]. 

 

3.3 Random Oversampling (ROS) 

Among the available data augmentation techniques for oversampling, ROS is the simplest. This 

algorithm works by making a new copy of real random samples from the minority class. This 

generates no real “synthetic” samples and pro-vides no novelty to a machine learning model, 

leading to overfitting. Still, it might be more realistic and scalable than the techniques 

mentioned earlier [9][16]. 

 

4. GENERATIVE ADVERSARIAL NETWORKS (GANs) 

GANs [2] are a Deep Learning framework capable of learning representations of high-

dimensional data and use these representations to create new unseen data based on a competitive 

game between two neural networks. A generator (G) is usually a deep convolutional neural 

network (DCNN) that feeds a discriminator DCNN (D) with random numbers extracted from a 

latent space, along with numbers representing the dimensions of a real sample. D is responsible 

for evaluating both samples (random and real) and signals back G with its findings in the form 

of a “real or not real” indicator. G is then stimulated to make random numbers changes from 

latent space to make them look more “real.” G’s ultimate goal is to feed D with such realistic 

samples from latent space that D cannot discriminate between real and random. This framework 

represents a zero-sum game between two “machine” players, which ultimately leads to a 

convergence point where both players are stimulated to improve [17]. Recent research has 

demonstrated that data generated using the GANs framework resulted in outstanding results 

[6][18], mainly in the computer vision domain. 
GANs are known to be “hard” to train [5] since there is no objective way to guarantee that both 

G and D's loss will remain stable during the training process. This leads to “model collapse,” 

where either G or D becomes absolutely dominant, resulting in low-quality samples emerging 

from this structure. This problem has been tackled with the proposal of various other GANs 

structure or algorithms to ease the training of GANs. One such algorithm is the WGAN model 

[4][5][6]. 

 

4.1 Wasserstein GAN (WGAN) 

WGAN [5] aims to solve GAN training's instability by applying some slight but elegant changes 

to the original framework. First, it tries to minimize the Earth Mover’s distance (or Wassertein-
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1) by using a new D network called “Critic” (C), which is very similar to the original D. Still, 

instead of outputting the probability of a given sample to be real or fake, it outputs the “realness” 

of that sample. Secondly, it removes the log functions in both G and C's losses and finally 

satisfies the 1-Lipschitz constraint by clipping the weights in C. In other words, it guarantees 

that there are no “realness” above 1 or less than 0, which might be a potential aspect of model 

collapse. However, this approach is not recommended by [6], which proposes a modified 

version of WGAN containing gradient penalty (GP) instead of weight clipping. This model is 

referred to as WGAN-GP. The whole mathematical intuition behind such changes is 

demonstrated in [5] and [6].  

 

5. METHODS 

This research is based on an open dataset made available by the “Hospital Israel-ita Albert 

Einstein” (Brazil) on the online platform “Kaggle” [22]. The dataset is already anonymized, 

mostly standardized, and contains the exam results of patients tested for 2019-nCoV, being 

positive the minority class. With this research, we test different approaches to oversample the 

minority class of this noisy dataset, aiming to increase a classifier’s capability of detecting 

positive cases while minimizing false positives. The data augmentation techniques presented 

here are SMOTE, ADASYN, ROS, representing the most conventional techniques [9] and 

WGAN, representing a novel approach to oversampling. All experiments were done in Python 

by using its data science libraries and Google’s Keras for Deep Learning. 

 

5.1 Data Preprocessing 

Before generating the synthetic samples, the dataset was transformed to minimize the noise. To 

accomplish this, we first changed the names of all features (which ranges from patient’s age to 

exams results) to a discretized form, where features iteratively received the name “f” followed 

by an integer starting in 0. After that, we removed empty-valued features. We understand that 

these features would not contribute to creating good quality synthetic samples. Also, some 

samples had only a few empty-valued features. For these samples, we opted to fill the empty 

values with the median of that feature on the age quantile containing the sample since exam 

results would look more realistic for similar ranges of age (quantiles) than if considering the 

overall median for all age quantiles. Features with more than 90% of empty-valued samples 

were also removed since we would prefer not to input the median in such a large number of 

samples.  

Once all samples had no empty-valued features, we worked on removing features with zero-

variance or features with high collinearity (>.95) on the Spearman correlation coefficient. We 

understand that the first presents no discrimination capabilities, while features with high 

collinearity are well explained by other features and could be removed to comply with 

parsimony. As an additional measure to rationally decrease the number of features, we applied 

a recursive feature elimination (RFE) algorithm that recursively combines features concerning 

the target and measures its impact on model output. Features that didn’t achieve a minimal 

impact threshold can be removed without compromising the model's final performance [25]. 

 

5.2 Data Transformation and Training 

We standardized its features with the database ready by removing the mean and scaling to unit 

variance; then, we started to create synthetic samples. For all 4 data augmentation techniques 

mentioned earlier, we created several synthetic samples proportional to a given percentage of 

real samples in a positive class. Therefore we created 30%, 50%, and 70% synthetic positive 

samples.  

To create synthetic samples with SMOTE and ADASYN, we opted to rely on k-nearest 

neighbors with k=5. This would provide us with a wide range of samples, allowing for faster 
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calculations of Euclidean distances. In samples created with ROS, no changes have been made 

to the algorithm randomness, so samples created with this method rely entirely on its standard 

form implemented in Python’s sci-kit-learn. 

Samples created with WGAN were created in a totally different fashion, where a Deep Learning 

model needs to be trained to generate these samples. We developed the GANify Python library 

[24], which ease implementing the WGAN model described in [5]. Real samples and random 

noise are fed into C by G in batches of size 8 uniformly distributed, with a 5% probability of 

flipping its labels, meaning that real samples can be fed into C with the label “false,” while false 

samples created from random noise could be fed into C with the label “real.” This is reported 

to be beneficial for WGAN performance [5][6]. WGAN model is then trained during 1500 

epochs, which was the optimal number during our experiments in terms of model convergence. 

Once all synthetic samples were available, we trained a Gradient Boosted Decision Tree 

(GBDT) [28] classifier in 13 different combinations of real and synthetic samples for the 

positive class, as well as different ratios between positive and negative (Table 1), stratifying 

training and validation data by the target class in 10 folds, applying cost-sensitive learning 

(CSL) [9] on each fold. The choice for 10 folds is based on our findings suggesting that 10 

might be a number where training results are stable, while the option for CSL works as an 

additional measure to tackle data imbalance in all scenarios. We also created a holdout test set, 

which is balanced and composed of the real samples that were replaced by synthetic ones on 

the training set and the same number of samples randomly selected from negative class, thus 

the different ratios on training  

We then optimized the classifier hyperparameters [23] with a uniform randomized search within 

the possible range of values listed in Table 2 for 20000 epochs. We noticed that increasing the 

number of epochs resulted in small improvements in scoring performance while considerably 

increasing the GBDT classifier's computational time. We opted for a GBDT [28] classifier 

because it gives us an obvious explanation on the effect each feature had on the model result 

with the aid of the Shapley Additive Explanations (SHAP) model [21] as seen in Fig. 5, which 

greatly helps us on validating the model results. In addition to that, GBDT classifier allows 

different sampling algorithms such as “gradient boosted decision tree” (gbdt), “gradient-based 

one side sampling” (goss), and “dropout meets multiple additive regression trees” (dart), all of 

those provide different training strategies that might help on improving training performance 

[28] 

 
Table 1. Training Scenarios. 

Algorithm % Synthetic on Positive Train Imbalance 

Ratio 

Test Imbalance 

Ratio 

None 0% 1:10 1:1 

ROS 30%, 50%, 70% 1:10, 1:9, 1:8 1:1 

ADASY

N 

30%, 50%, 70% 1:10, 1:9, 1:8 1:1 

SMOTE 30%, 50%, 70% 1:10, 1:9, 1:8 1:1 

WGAN 30%, 50%, 70% 1:10, 1:9, 1:8 1:1 

 
Table 2. Classifier hyperparameters and its possible values, represented in a range when numeric 

Hyperparameter Range (from - to) 

n_estimators 10 - 200 

min_split_gain 0 - 0.5 

num_leaves 3 – 30 

learning_rate 0.001 - 1 

colsample_bytree 0 – 0.5 
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boosting_type “gbdt”, “dart”,”goss”  

 

 

5.3 Evaluation 

The impact of these techniques will be assessed by comparing the classifier’s precision, recall, 

and f1-score on the balanced test set, after being trained with the different combinations of real 

and synthetic data. We opted to test on a balanced test set to have an alternative test scenario. 

The stratified 10-fold validation mentioned in the previous section is already validating the 

training in an imbalanced subset of data. The option for a balanced test set gives us an estimate 

of the model’s performance on a scenario that considers an accelerated spread of 2019-nCoV 

infection [1]. 

The recall score (RS) will provide us with a metric of how well the positive samples were 

predicted among all test samples. However, for a classifier to excel on this metric, it could 

simply predict all samples as positive, which would lead to a maximum recall, but with a great 

number of false positives (FP). To tackle this potential flaw in our evaluation method, we’re 

considering the precision score (PS) as our main evaluation metric. The PS provides us with a 

metric demonstrating the number of predicted positive samples among all real positive samples. 

This will give us a good idea of how well the classifier identifies true positives (TP) against FP, 

a critical measure for this research. As a complementary measure, we also evaluate the f1-

measure, which takes the harmonic mean of both RS and PS [20] 

 

6. RESULTS 

By applying the preprocessing and transformation routines specified in the previous section, 

the dataset initially composed of 5644 samples and 111 features was transformed into a dataset 

containing the same number of samples, but with 38 features, including one target (named “f2”), 

which represents the final diagnostic, being “positive” for a sample tested positive for 2019-

nCoV, and negative the opposite.  The dataset contains 5086 negative samples and 558 positive 

samples (thus a 1:10 ratio). In each of those training scenarios listed in Table 1, we explored 

the data dispersion in a 2D scatter plot after reducing it to its 2 main components with principal 

component analysis (PCA). For the sake of brevity, we present here one 2D scatter plot for each 

oversampling technique, the one that achieved higher PS, as well as the SHAP [21] plot for 

WGAN. 

 

Fig. 1. Data from the scenario where 50% of the real samples were replaced by synthetic samples created with ROS 
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Fig. 2. Data from the scenario where 50% of the real samples were replaced by synthetic samples created with SMOTE 

 

Fig. 3. Data from the scenario where 50% of the real samples were replaced by synthetic samples created with ADASYN 

 

Fig. 4. Data from the scenario where 50% of the real samples were replaced by synthetic samples created with WGAN 
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Fig. 5. The impact of each variable on model’s output for the scenario in Fig. 4, as interpreted by Shapley Additive 

Explanations (SHAP) model [21] 

 

After training the classifier with the scenarios in Table 1, optimizing the parameters in Table 

2, we found the parameters that lead to the highest PS for each scenario, as described in Table 

3, Table 4, Table 5, Table 6, and Table 7. 

Table 3. Best hyperparameter values for the “No Synthetic Scenario” 

Scenario Hyperparameter Value 

 

 

NO SYNTHETIC 

(Training with 70%) 

(Test set: 782 

samples) 

n_estimators 83 

min_split_gain 0.15 

num_leaves 10 

learning_rate 0.246 

colsample_bytree 0.4 

boosting_type “gbdt” 

Precision 0.582 

Recall 0.759 

F1-Score 0.659 

 

Table 4. Best hyperparameter values for the (real +) ROS scenario 

Scenario Hyperparameter Value 

 

Real + ROS 

(trained with 50% 

synthetic positive 

samples) 

n_estimators 10 

min_split_gain 0.20 

num_leaves 18 

learning_rate 0.008 

colsample_bytree 0.35 
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(Test set: 558 

samples) 

boosting_type “gbdt” 

Precision 0.584 

Recall 0.534 

F1-Score 0.558 

 

Table 5. Best hyperparameter values for the (real +) SMOTE scenario 

Scenario Hyperparameter Value 

 

Real + SMOTE 

(trained with 50% 

synthetic positive 

samples) 

(Test set: 558 

samples) 

n_estimators 47 

min_split_gain 0.15 

num_leaves 18 

learning_rate 0.019 

colsample_bytree 0.40 

boosting_type “dart” 

Precision 0.585 

Recall 0.591 

F1-Score 0.588 

 

Table 6. Best hyperparameter values for the (real +) ADASYN scenario 

Scenario Hyperparameter Value 

 

Real + ADASYN 

(trained with 50% 

synthetic positive 

samples) 

(Test set: 558 

samples) 

n_estimators 44 

min_split_gain 0.20 

num_leaves 16 

learning_rate 0.002 

colsample_bytree 0.40 

boosting_type “gbdt” 

Precision 0.589 

Recall 0.541 

F1-Score 0.564 

 

Table 7. Best hyperparameter values for the (real +) WGAN scenario 

Scenario Hyperparameter Value 

 

Real + WGAN 

(trained with 50% 

synthetic positive 

samples) 

(Test set: 558 

samples) 

n_estimators 66 

min_split_gain 0.20 

num_leaves 5 

learning_rate 0.208 

colsample_bytree 0.35 

boosting_type “dart” 

Precision 0.967 

Recall 0.107 

F1-Score 0.193 
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In addition to these results, we plotted the value distribution for two of the most relevant features 

on these models, according to SHAP [21] qualitative measure. The distributions presented as 

boxplot charts are presented in Fig. 6 and Fig. 7. Worth mentioning that on these plots, 

“pos_samples” is the distribution for positive samples, “neg_samples” for negative samples, 

“wgan_samples” represent the value distribution for WGAN, “ada_samples” for ADASYN, 

“sm_samples” for SMOTE, and “ros_samples” for ROS. 

 

 

Fig. 6. Boxplot comparing the distribution of the different samples on feature “f1” 

 

 

Fig. 7. Boxplot comparing the distribution of the different sample on feature “f8” 
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7. DISCUSSION 

According to [26], machine learning-based models are of great interest in biomedical sciences 

given its capability to deal with high volume, high dimensional data, which are often generated 

in this domain. Especially in a pandemic scenario, it becomes even more important to deal with 

data with such characteristics, mak-ing machine learning an important tool to tackle the crisis. 

[27] points out that multidisciplinary research and international cooperation help speed up the 

development of potential solutions. A multidisciplinary approach can help with a fast-moving 

pandemic crisis using machine learning for patient outcome prediction [27]. It is the one this 

research aims to contribute. 

As proposed by [27], we also believe that data for research on the pandemic crisis should be 

collected in scalable ways, making it easier for researchers to explore the data and generate 

insights. The data used for this research, for example, is one of the many datasets widely 

available online to promote the development of machine learning solutions to tackle the disease, 

and which required some preprocessing to be used as input for machine learning purposes [26].  

 Although the preprocessing steps are taken throughout this research severely decreased the 

number of available features used for augmentation and training of the final classifier, they are 

much relevant to prepare data for data mining and machine learning problems as suggested by 

[25]. A combination of sparse-learning-based models such as RFE and statistical-based 

techniques for feature elimination are also evaluated by [25] in different datasets. Both are 

found to be beneficial to decrease model complexity. 

As far as synthetic samples are concerned, a recent study [16] compared SMOTE and 

ADASYN, other oversampling techniques in different toy datasets, and their final performance 

measure by a classifier f-measure are fairly similar. This is also something found in Table 4 to 

Table 6, mainly in terms of PS. In fact, by analyzing Fig. 2 and Fig. 3, it is also possible to see 

such a pattern. ROS (Table 4, Fig. 1), although being the simplest oversample technique [9], 

presented results much similar to SMOTE and ADASYN in similar training scenarios, which 

points to the fact the SMOTE and ADASYN might have created good quality synthetic samples, 

but without much novelty in this particular dataset. 

The samples generated with WGAN, as seen in Fig. 6 and Fig. 7, comply with the findings in 

[5][6], as well as [18] and [19], which points to the high-quality of samples created with such 

technique. Fig. 4 demonstrates that such synthetic samples are much different from the ones in 

Fig. 1 to Fig. 3 and, therefore, are presenting enough novelty to the classifier that it is even able 

to more precisely identify TP on the test set, as demonstrated on PS in Table 7. Fig. 5 also 

demonstrates that not a single feature is responsible for the result achieved with WGAN, but a 

combination of relevant features explored in Fig. 6 and Fig. 7.  

Due to the high amount of model optimization techniques used in this research and the 

computing power needed to generate viable WGAN samples, we believe it might not be 

possible to work on retraining the WGAN model in a real-time fashion. Additionally, since this 

model is more specific than sensitive, it would be more reliable as a secondary diagnostic 

measure, meaning it would be used for those patients initially selected by a sensitive measure 

on an initial screening. Therefore, a system containing this technique could be retrained from 

time to time, with new patients being tested with the most updated model by the time their exam 

results are ready. 

 

8. CONCLUSION 

From these experiments, it was possible to identify that synthetic samples created with WGAN 

offer an alternative to traditional data augmentation techniques for oversampling a minority 

class. Additionally, the experiments showed that a classifier trained with samples created with 

WGAN outperform the precision of all other scenarios, including those where the classifier was 
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trained with samples created from other oversampling strategies. Given this dataset's nature, we 

understand that greater precision is preferable as an additional detection mechanism for 2019-

nCoV. 

By analyzing the scatter plots, we were also able to notice that positive and negative samples 

frequently overlap, which means that the features available are not capable of clearly 

discriminating between positive and negative samples in a 2-D space. It is also possible to notice 

that in Fig. 4, samples created with WGAN occupy a wide range of possible positions on the 

plot, rarely overlapping, some-thing that is very different from the results observed in other 

oversampling algorithms. We understand that this represents the realistic nature of these 

samples, as also demonstrated in [5][6][7]. Finally, we believe that oversampling based on 

generative adversarial networks should be further explored in other datasets to tackle issues 

with different configurations, such as time-series. 
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